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Abstract. Many applications generate time-series and analyze it. One
of the most important time-series analysis tools is anomaly detection,
and discord discovery aims at finding an anomaly subsequence in a time-
series. Time-series is essentially dynamic, so monitoring the discord of
a streaming time-series is an important problem. This paper addresses
this problem and proposes SDM (Streaming Discord Monitoring), an al-
gorithm that efficiently updates the discord of a streaming time-series
over a sliding window. We show that SDM is approximation-friendly,
i.e., the computational efficiency is accelerated by monitoring an approx-
imate discord with theoretical bound. Our experiments on real datasets
demonstrate the efficiency of SDM and its approximate version.
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1 Introduction

Motivation. Many real-world applications generate time-series and want to uti-
lize it for obtaining useful knowledge [6]. Anomaly or outlier detection supports
this, because it can find unusual observations and helps data cleaning, thereby
time-series anomaly (or outlier) detection has been extensively studied [19, 23].
One of the most effective time-series anomaly detection is discord discovery [10,
11, 21]. Given a time-series, the discord of the time-series is the subsequence with
the largest distance to its nearest neighbor among all subsequences (the formal
definition is introduced in Section 2). Fig. 1 illustrates an example, and the red
subsequence is the discord of an ECG time-series.

It has been shown that discord discovery can be employed in industry [3],
medical care [20], and Web [21]. Note that time-series generated in the above
applications is essentially dynamic [12]. Therefore, the discord of a time-series is
updated over time. This fact renders an important problem of discord monitoring
of a streaming time-series. We address this problem with a count-based sliding
window setting in this paper.

Technical challenge. When the window slides, we have a new subsequence
and the oldest subsequence expires. Due to them, the nearest neighbor of each
subsequence may change, i.e., the discord may also change. Applications, which
employ discord monitoring, require real-time update of the discord, hence we
need to evaluate whether the discord is updated or not.
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Fig. 1. A streaming ECG time-series and its discord (the red subsequence)

A straightforward approach to achieve this is to re-evaluate the nearest neigh-
bor of each subsequence whenever the window slides. However, this approach
obviously incurs an expensive cost. Although an existing discord detection al-
gorithm for static time-series [10] can also be utilized for discord monitoring, it
cannot incrementally update the discord. Therefore, when the discord changes,
it has to re-evaluate the discord from scratch, which is not suitable for real-time
monitoring, as shown in our experiments.

From the above discussion, we see that an efficient solution needs to have
the following properties: it can (i) evaluate whether the discord changes or not
quickly and (ii) discover the discord when it is updated by the window slide as
soon as possible.

Overview of our solution and contribution. We devise SDM (Streaming
Discord Monitoring) to achieve such a solution. SDM exploits a nearest neighbor
search based on sequential scan, which is fast for high-dimensional data [18]. This
approach is efficient for identifying the subsequences whose nearest neighbors
change, thus satisfies the property (i). Besides, SDM maintains two kinds of
nearest neighbor for each subsequence, to prune unnecessary computation when
the discord changes, which enables result update without computing the discord
from scratch, i.e., SDM satisfies the property (ii). SDM furthermore reduces the
worst update time by using an approximation with bound guarantee.

To summarize, our contributions are as follows:

– We address the problem of time-series discord monitoring over a sliding
window. To the best our knowledge, this paper is the first to address this
problem.

– We propose SDM to efficiently solve the problem.
– We propose an approximate version of SDM, namely A-SDM, which reduces

the update time of the worst case and provides a theoretical guarantee w.r.t.
the monitoring result.

– We empirically evaluate SDM and A-SDM on real datasets, and the results
show that they quickly update the discord and the worst update time is
significantly faster than those of competitors.

Road-map. Section 2 defines the problem of this paper and Section 3 introduces
related works. In Section 4, we present our algorithm SDM, and in Section 5, we
show our experimental results. Finally, in Section 6, we conclude this paper.
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2 Problem definition

A streaming time-series t is an unbound sequence of real values and represented
as t = (t[1], t[2], ...). First of all we define subsequence of t.

Definition 1 (Subsequence). Given a time-series t and a subsequence size l,
the subsequence sp, which starts at t[p], is defined as follows.

sp = (t[p], t[p+ 1], ..., t[p+ l − 1])

Let sp[x] be the x-th value of sp, then sp = (sp[1], sp[2], ..., sp[l]). Next, we
use z-normalized Euclidean distance between two subsequences. Note that z-
normalized Euclidean distance is often utilized to measure the similarity between
time-series [15, 22].

Definition 2 (z-normalized Euclidean distance). Given two subsequences
sp and sq with length l, their z-normalized Euclidean distance, dist(sp, sq), is.

dist(sp, sq) =

√√√√ l∑
i=1

(
sp[i]− µ(sp)

σ(sp)
− sq[i]− µ(sq)

σ(sq)
)2,

where µ(s) and σ(s) are respectively the mean and standard deviation of {s[1], ..., s[l]}.
It is obvious that dist(sp, sp+1) is small but this observation is not interesting
and interrupts obtaining a meaningful result [2, 14]. We therefore ignore trivial
matched subsequences, which are defined below.

Definition 3 (Trivial match) [5]. The set Sp of subsequences that have trivial
match relationships with sp is

Sp = {sq | p− l + 1 ≤ q ≤ p+ l − 1}.

Here, the applications introduced in Section 1 are interesting only in recent
values of a streaming time-series [13]. We hence employ a count-based sliding
window to consider only the most recent w values of the time-series t, as with
existing works [9, 12]. That is, we can represent t on the sliding window as
t = (t[i], ..., t[i + w − 1]), and t[i + w − 1] is the latest value of t. When the
window slides, a new subsequence, which has t[i+ w − 1], is generated and the
subsequence, which has t[i−1], expires. Note that, when we refer to a subsequence
s of t, s is on the window hereafter. Note furthermore that all subsequences on
the window are memory-resident.

Our problem is discord monitoring, and the discord is obtained from the
nearest neighbor of each subsequence. We therefore define the nearest neighbor
of a given subsequence s.

Definition 4 (Nearest neighbor). Given a subsequence sp and a set S of
all the subsequences of a streaming time-series t, the nearest neighbor of sp is
the subsequence that satisfies argminsq∈S\Sp

dist(sp, sq).
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Let sp.distNN be the distance between sp and its the nearest neighbor, then our
problem is formally defined as follows.

Problem definition. Given a streaming time-series t, a windows size w, and
a subsequence size l, we monitor the discord s∗ of t that satisfies

s∗ = argmax
sp∈S

sp.distNN .

Applications that employ discord monitoring requires real-time update of the
discord. We therefore aim at minimizing computation time to update s∗.

3 Related work

Although there exist many works that mine useful information from time-series
[6] and temporal data [1, 7], we here focus on existing studies that have addressed
discord detection/monitoring.

Discord discovery of a static time-series. Several works have proposed ef-
ficient discord discovery algorithms for a static time-series. Literature [10] has
proposed HOT SAX to find the discord of a time-series that residents in-memory.
HOT SAX basically computes the nearest neighbor for each subsequence sp, but
terminates the computation when we know that an upper-bound of sp.distNN

is less than s∗.distNN . To enable this early termination efficiently, HOT SAX
transforms subsequences to symbols (or strings), and uses an idea that the dis-
tance between two subsequences with similar symbols tends to be small. Hence,
HOT SAX evaluates the distance of subsequences with similar symbols in an
early iteration. We can employ HOT SAX for our environment but incurs sig-
nificant cost when s∗ expires, i.e., the update time in the worst case is too long.
We show this in Section 5.

Literature [21] assumes that a given time-series is disk-resident and has pro-
posed an algorithm based on linear scan, which deals with a totally different
setting to ours. Literature [8] has proposed a parallel algorithm for discord de-
tection. We note that parallel computation is beyond the scope of this paper.

Discord monitoring of a dynamic time-series. Literatures [17, 22] have
proposed discord monitoring algorithms for a streaming time-series. Literature
[17] utilizes an R-tree to quickly evaluate whether a new subsequence can become
the discord or not. On the other hand, literature [22] employs a data structure
Matrix Profile, which has been originally proposed for discord discovery of a
static time-series. Unfortunately, they consider append-only case, and dealing
with deletions of subsequences is not trivial for them.

4 SDM: Streaming Discord Monitoring

Recall that, when the window slides, a new subsequence sn is generated and the
oldest subsequence se expires. They may change the discord, because
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Fig. 2. A streaming time-series on a sliding window with w = 8. The arrows indicate
the nearest subsequences, and an arrow length represents the distance to the nearest
subsequence. The red subsequence is the discord.

– sn may become the discord,
– the subsequences, whose nearest neighbors were se, may become the discord,
– if se is the discord, s∗ certainly changes, and
– the nearest neighbors of some subsequences may become sn, which also may

derive the discord update.

Example 1. Fig. 2 illustrates a streaming time-series t on a sliding window
with w = 8. Assume l = 2, thus each subsequence s of t is represented by a
two-dimensional point. Note that the arrows indicate the nearest subsequences
(for example, the nearest subsequence of s1 is s5), and arrow length shows the
distance to the nearest subsequence. In Fig. 2(a), the discord is s6, and after the
window slides, s1 expires and s9 is generated as shown in Fig. 2(b). We see that
the nearest neighbors of s4, s5, s6, s7, and s8 change, due to the expiration of
s1 and the generation of s9. This results in the discord update (from s6 to s3).

4.1 Main idea

Our algorithm SDM achieves an efficient discord update by using simple data
structures and by exploiting sequential scan. More specifically, we solve the prob-
lem with the following ideas:

1. If we maintain the nearest neighbor of each subsequence and the distance,
we can easily identify the discord.

2. By scanning all subsequences, we can compute the nearest neighbor of sn,
update the nearest neighbors of the other subsequences incrementally, and
identify the subsequences whose nearest neighbors were se before the window
slides.

The scan-based approach (i.e., the second idea) seems simple, but it is effec-
tive for efficient discord monitoring. One may consider an index-based approach,
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e.g., HOT SAX, to compute the nearest neighbor of sn fast by pruning some sub-
sequences. Such an approach unfortunately loses chances of updating the nearest
neighbors of pruned subsequences, although they may need to be updated. This
consequently incurs an expensive cost to verify the nearest neighbors of many
subsequences. In Section 5, we show that such an approach takes a significant
update cost in the worst case, suggesting that it is not suitable for real-time
monitoring.

4.2 Data structure

SDM maintains NNolder-tuple, NNyounger-tuple, and NN-tuple for each subse-
quence.

Definition 5 (NNolder-tuple). NNolder-tuple of a subsequence sp is a pair of

– sp.idNNolder
: the identifier of the subsequence which is nearest to sp among

the set of subsequences which have been generated before sp is generated, and
– sp.distNNolder

: the distance to the above nearest subsequence.

Definition 6 (NNyounger-tuple). NNyounger-tuple of a subsequence sp is a
pair of

– sp.idNNyounger
: the identifier of the subsequence which is nearest to sp among

the set of subsequences which have been generated after sp is generated, and
– sp.distNNyounger

: the distance to the above nearest subsequence.

Definition 7 (NN-tuple). NN-tuple of a subsequence sp is a pair of the iden-
tifier of the nearest neighbor of sp and sp.distNN .

Note that, if sp.distNNolder
< sp.distNNyounger , NN-tuple of sp is its NNolder-

tuple. Otherwise, NN-tuple of sp is its NNyounger-tuple. Furthermore, if NN-
tuple of sp is its NNyounger-tuple, i.e., sp.idNNolder

≥ sp.idNNyounger
, we do

not need to consider its NNolder-tuple, because its NNolder-tuple never becomes
its NN-tuple. This is an important observation to avoid unnecessary distance
computation.

Example 2. Fig. 3 summarizes NNolder-tuple, NNyounger-tuple, and NN-tuple
of each subsequence in Fig. 2. In Fig. 3(a), for example, NNolder-tuple of s2 is
empty, because s2.distNNolder

> s2.distNNyounger . In Fig. 3(b), highlighted parts
are updated parts from Fig. 3(a), which are derived from the expiration of s1 and
the generation of s9.

We can see that the discord can be obtained from NN-tuple of each subse-
quence, e.g., s6 and s3 in Figs. 3(a) and 3(b), respectively. That is, if we can
efficiently update NN-tuples, we can efficiently monitor the discord. We use se-
quential scan to do this, as discussed in Section 4.1.

Why we use older and younger nearest neighbors. Let sp be the older
nearest neighbor of sq, i.e., sq.idNNolder

= p. Also, sr be the younger nearest
neighbor of sq. It is trivial that sp expires before sq does. When sp expires,
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Subsequence NNolder-tuple NNyounger-tuple NN-tuple

𝑠1 - 5,1.0 5,1.0

𝑠2 - 7,2.7 7,2.7

𝑠3 - 8,2.5 8,2.5

𝑠4 1,0.8 5,1.5 1,0.8

𝑠5 1,1.0 8,1.8 1,1.0

𝑠6 - 7,2.8 2,3.0

𝑠7 3,2.2 8,3.2 3,2.2

𝑠8 1,1.4 - 1,1.4

(a) Before the window slides

Subsequence NNolder-tuple NNyounger-tuple NN-tuple

𝑠2 - 9,1.5 9,1.5

𝑠3 - 8,2.5 8,2.5

𝑠4 - 5,1.5 5,1.5

𝑠5 4,1.3 8,1.8 4,1.3

𝑠6 - 9,2.4 9,2.4

𝑠7 - 9,1.2 9,1.2

𝑠8 5,1.6 9,4.2 5,1.6

𝑠9 7,1.2 - 7,1.2

(b) After the window slided

Fig. 3. NNolder-tuple, NNyounger-tuple, and NN-tuple of each subsequence in Fig. 2

if dist(sp, sq) < dist(sq, sr), we do not know the nearest neighbor of sq. (If
dist(sp, sq) ≥ dist(sq, sr), sr is the nearest neighbor of sq, so we do noth-
ing in this case.) However, if sq.distNNyounger

= dist(sq, sr) is smaller than
s∗.distNN , we can guarantee that sq is not the discord, because sq.distNN ≤
sq.distNNyounger

. That is, we do not have to search its nearest neighbor, which
reduces the update time. Furthermore, even if dist(sq, sr) is not smaller than
s∗.distNN , we just need to search the older nearest neighbor of sq. The search
space is only a set of subsequences sp such that p < q, which is much smaller
than the set of all subsequences.

We can see that if we employ only NN-tuple, we need a large update cost
when the nearest neighbor of sq expires. This is because we cannot prune its
nearest neighbor search and its search space is large.

4.3 Algorithm description

Rationale of utilizing sequential scan. When the window slides, we need
to confirm the discord update. This is to check the nearest neighbors of the
other subsequences sp. Recall that the nearest neighbor of sp may become the
new subsequence sn. We see that for all sp, sn is younger, thereby the check
(normally) corresponds to update the NNyounger-tuple of each subsequence.
For fixed l, this check needs O(w) time, because we need O(1) time to check
min{sp.distNNyounger

, dist(sp, sn)} for each sp. This is exactly the same cost of
sequential scan of all subsequences on the window.

Algorithm. SDM is designed based on the above analysis and the motivation
of our data structure (Section 4.2), and is described in Algorithm 1. We first
maintain a temporal discord s∗temp, which is the previous discord (i.e., the one
before the window slided) at initialization. Recall that S is the set of all subse-
quences. We second remove the expired subsequence se from S and insert the
new subsequence sn into S. Next, we initialize NNolder-tuple, NNyounger-tuple,
and NN-tuple of sn. We then execute Nearest-Neighbor-Search. In a nutshell, this
function computes the nearest neighbor of sn while updating NNyounger-tuples
of the other subsequences.



8 S. Kato et al.

Algorithm 1: SDM

Input: se: the expired subsequence, sn: the new subsequence
Output: s∗: the discord

1 s∗temp ← the discord before the window slided
2 S ← S\{se}, S ← S ∪ {sn} ▷ S is the set of all subsequences on the window

3 sn.⟨·, ·⟩NN ← ∅, sn.⟨·, ·⟩NNolder ← ∅, sn.⟨·, ·⟩NNyounger ← ∅
4 s∗ ← Nearest-Neighbor-Search

Algorithm 2: Nearest-Neighbor-Search

Input: S: the set of all subsequences, s∗temp: a temporal discord
Output: s∗: the discord

1 for ∀sp ∈ S\Sn do
2 d← dist(sp, sn)
3 if sn.distNNolder > d then
4 sn.⟨·, ·⟩NNolder ← ⟨p, d⟩
5 if sp.distNNyounger > d then
6 sp.⟨·, ·⟩NNyounger ← ⟨n, d⟩
7 if sp.⟨·, ·⟩ ̸= ∅ ∧ sp.distNN > sp.distNNyounger then
8 sp.⟨·, ·⟩NN ← sp.⟨·, ·⟩NNyounger

9 if sp = s∗temp then
10 s∗temp ← Discord-Update

11 if sp.idNN = e then
12 sp.⟨·, ·⟩NNolder ← ∅, sp.⟨·, ·⟩NN ← ∅
13 if sp = s∗temp then
14 s∗temp ← Discord-Update

15 if sp.distNNyounger > s∗temp.distNN then
16 s∗temp ← Older-Nearest-Neighbor-Search(sp)

17 sn.⟨·, ·⟩NN ← sn.⟨·, ·⟩NNolder

18 s∗ ← s∗temp

Nearest-Neighbor-Search. Algorithm 2 details this function. Given a subsequence
sp ∈ S\{sn}, we do the following. First, we compute dist(sp, sn). Then we
update NNolder-tuple of sn (lines 3–4) and NNyounger-tuple of sp (lines 5–7) if
necessary. Note that if NNyounger-tuple of sp is updated, we update NN-tuple of
sp if necessary (lines 8–10). Besides, if NN-tuple of sp is updated by the above
operation and sp is s∗temp, the distance to the nearest neighbor of s∗temp becomes
smaller. This means that the discord may change, so we execute Discord-Update,
which is introduced later, to obtain a temporal discord.

Next, we check whether the nearest neighbor of sp expires. If so, we initial-
ize NNolder-tuple and NN-tuple of sp (line 12), and if sp is s∗temp, we execute
Discord-Update. In addition, if sp.distNNyounger

≤ s∗temp.distNN , we see that sp
is not s∗, thus we prune its nearest neighbor search, as mentioned in Section
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Algorithm 3: Discord-Update

Output: s∗temp: a temporal discord
1 s∗temp.⟨·, ·⟩NN ← ⟨−1, 0⟩
2 for ∀sp ∈ S such that sp.⟨·, ·⟩NN ̸= ∅ do
3 if s∗temp.distNN < sp.distNN then
4 s∗temp ← sp

5 for ∀sp ∈ S such that sp.⟨·, ·⟩NN = ∅ do
6 if sp.distNNyounger > s∗temp.distNN then
7 Up-Max-Heap(H, sp) ▷ sp is inserted into a heap H

8 while H ̸= ∅ do
9 sp ← Down-Max-Heap(H) ▷ sp is poped from H

10 if sp.distNNyounger < s∗temp.distNN then
11 break

12 else
13 s∗temp ← Older-Nearest-Neighbor-Search(sp)

14 return s∗temp

4.2. Otherwise, we execute Older-Nearest-Neighbor-Search(sp), which computes
NNolder-tuple of sp by sequential scan and updates s∗temp if necessary.

After we do the above operations for all sp ∈ S\{sn}, we obtain NN-tuple of
sn (line 17) and the correct s∗ (line 18).

Discord-Update. We describe this function in Algorithm 3. When we need to
update a temporal discord s∗temp, we first initialize its NN-tuple (line 1). Then,
by scanning a set of subsequence sp such that their NN-tuple is not empty,
we obtain s∗temp (lines 2-4). In addition, we scan a set of subsequences sp such
that their NN-tuple is empty and satisfies sp.distNNyounger

< s∗temp.distNN , to
maintain them in a heap H (lines 5–7). Note that, the subsequences in H are
sorted in descending order of sp.distNNyounger

.

Next, if H is not empty, we pop the front subsequence sp of H and check
whether sp satisfies sp.distNNyounger

< s∗temp.distNN (lines 8–9). If so, we ter-
minate Discord-Update (line 11). Otherwise, we execute Older-Nearest-Neighbor-
Search(sp) (line 13). It is important to note that, thanks to H and NNyounger-
tuple, we can avoid unnecessary executions of Older-Nearest-Neighbor-Search(·).

We here discuss the space and time complicities of SDM.

Theorem 1 (Space complexity). The space complexity of SDM is O(w).

Proof. We maintain NNolder-tuple, NNolder-tuple, and NN-tuple for each sub-
sequence, which requires O(1) space. Because the number of subsequences on
the window is O(w), SDM requires only O(w) space. □
Theorem 2 (Time complexity). The time complexity of SDM is O((1+c)wl+
c′(w + h log h)), where c is the number of executions of Older-Nearest-Neighbor-
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Search(·), c′ is the number of executions of Discord-Update, and h is the heap
size at line 8 of Algorithm 3.

Proof. The main cost of SDM is incurred by Nearest-Neighbor-Search. Be-
cause Nearest-Neighbor-Search scans S and computes distances between sp and
sn, which requires at least O(wl). In addition, during the scan, it may exe-
cute (some) Older-Nearest-Neighbor-Search(·), which requires O(wl), and Discord-
Update, which requiresO(w+h log h). Therefore Nearest-Neighbor-Search requires
O(wl + cwl + c′(w + h log h)), which concludes the proof. □

4.4 Approximation of SDM

From Theorem 2, we can see that the cost of SDM is dependent on the exe-
cution numbers of Older-Nearest-Neighbor-Search(·) and Discord-Update. In the
experiments, we observe that we usually have c = c′ = 0 for each window slide
in practice. However, if the nearest neighbors of many subsequences expire at
a time, SDM incurs a large cost to update the discord, since c and c′ become
large. If applications do not require the correct result but are tolerant of an
approximate (but highly accurate) result, we can alleviate the update time by
decreasing c and c′.

We propose A-SDM (Approximate-SDM), which monitors an approximate
discord with a theoretical guarantee. Surprisingly, A-SDM needs very slight ex-
tension to SDM. Given an approximation factor ϵ (> 1), which is specified by an
application, we replace line 15 of Algorithm 2 and line 10 of Algorithm 3 with

sp.distNNyounger > ϵ · s∗temp.distNN ,

and replace line 6 of Algorithm 3 with

sp.distNNyounger
< ϵ · s∗temp.distNN .

Then we have the following theorem.

Theorem 3 (Accuracy guarantee). Let sout be the subsequence monitored
by A-SDM. We have

sout.distNN ≥ s∗.distNN

ϵ
. (1)

Proof. We first demonstrate that Discord-Update, i.e., Algorithm 3, holds In-
equality (1). Recall that, if sp.distNNyounger ≤ ϵ · s∗temp.distNN , Discord-Update
does not insert sp into H. Even if sp is s∗, Inequality (1) holds. This is because
sp.distNN ≤ sp.distNNyounger

≤ ϵ · s∗temp.distNN . The same discussion is applied
to line 10.

We turn our attention to line 15 of Algorithm 2. It is important to notice that
at line 15, s∗ is sp or s∗temp. If s

∗
temp = s∗, A-SDM monitors the correct answer,

so Inequality (1) holds. On the other hand, if sp = s∗ and sp.distNNyounger ≤
ϵ · s∗temp.distNN , we monitor s∗temp = sout. This does not violate Inequality (1)
by using the above discussion at Discord-Update. We therefore conclude that
Theorem 3 is true. □
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5 Experiment

All experiments were conducted on a PC with Intel Xeon Gold 6154 (3.0GHz)
and 512GB RAM.

5.1 Setting

Datasets. We used the following three real datasets in this paper.

– Bitcoin1: This is a streaming time-series of bitcoin transactions. Its length
is 100,000.

– ECG [4]: This is a streaming time-series of electrocardiogram. Its length is
100,000.

– Google-cpu [16]: This is a streaming time-series of CPU usage rate generated
by Google data center. Its length is 133,902.

Algorithms. We evaluated the following algorithms, and all of them were im-
plemented in C++.

– HOT SAX [10]: This is a discord detection algorithm for a static time-series.
We extended the original algorithm to deal with the discord update based
on window sliding. This is a competitor of SDM.

– N-SDM: This is a variant of SDM, and employs only NN-tuple but does not
employ NNolder-tuple and NNyounger-tuple. This algorithm is employed to
investigate how efficiently NNolder-tuple and NNyounger-tuple function.

– SDM: This is the proposed algorithm in this paper.
– A-SDM: The approximation version of SDM.

We do not consider the other existing discord detection/monitoring algo-
rithms, because all of them cannot deal with subsequence deletions and discord
expirations. The original HOT SAX also cannot do it, but is a state-of-the-art
algorithm that computes the discord from scratch.

Criteria. We measured the average update time per window sliding, the worst
update time, and the practical approximation rate (= s∗.distNN/sout.distNN ).

5.2 Results

We here show our experimental results. Note that the default values of l, w, and
ϵ are 100, 10000, and 1.2. When we investigate the impact of a given parameter,
the other parameters are fixed.

Impact of l. We investigate how subsequence size affects the performance of
each algorithm, and Fig. 4 illustrates the result. We here focus on average update
time, which is shown in Figs. 4(a)–4(c). The first observation is that SDM has a
linear scalability w.r.t. l. This is reasonable, as Theorem 2 verifies. Second, SDM

1 http://api.bitcoincharts.com/v1/csv/
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Fig. 4. Impact of l (subsequence size)

(and A-SDM) is (are) faster than the competitors. For each window slide, the
average numbers of executions of Older-Nearest-Neighbor-Search(·) and Discord-
Update are small, so SDM and A-SDM show similar update time. Also, this
result suggests the effectiveness of the sequential scan based approach, as HOT
SAX, which is an index-based approach, incurs more update time. Furthermore,
compared with N-SDM, SDM is much faster. This is due to NNolder-tuple and
NNyounger-tuple, as discussed in Section 4.2.

Next, we focus on Figs. 4(d)–4(f), which depict the worst update time. It
can be seen that SDM has a competitive (or better) performance with (than)
N-SDM, which always holds the exact nearest neighbor for each subsequence,
and is significantly faster than HOT SAX. (We omit the result of A-SDM on
ECG, because it shows a similar performance to SDM.) This result demonstrates
that approaches for static time-series are not suitable for streaming time-series.

Impact of w. We next test the scalability of each algorithm w.r.t. the window
size. Focus on average update time, and we can see that SDM and A-SDM are
basically faster than the other algorithms, as shown in Figs. 5(a)–5(c). Besides,
SDM and A-SDM scale linearly w.r.t. the window size, which is also validated
by Theorem 2.

Figs. 5(d)–5(f) illustrate that the worst update time of SDM is always faster
than those of HOT SAX and N-SDM. This result is derived from the fact that
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Fig. 5. Impact of w (window size)

SDM reduces unnecessary distance computation (i.e., nearest neighbor search)
by its data structure. A-SDM furthermore reduces the worst update time, and
its worst update time is much faster than those of HOT SAX and N-SDM.

Impact of ϵ. Finally, we study the impact of the approximation factor ϵ of A-
SDM. Theoretically, a large ϵ provides small update time but inaccurate result.
Fig. 6 illustrates the practical relationship. From Figs. 6(a)–6(b), as ϵ becomes
large, the worst update time becomes shorter. This is a quite intuitive result.
(We confirmed that the average update time is not affected by ϵ, so the result
is omitted.) On the other hand, Figs. 6(c)–6(d) show that the practical approx-
imation rate is almost 1 (less than 1.03 actually), even if ϵ becomes large. That
is, A-SDM monitors a highly accurate result continuously.

6 Conclusion

Recent applications have been generating streaming time-series, and monitoring
outlier from the time-series is an important operator for anomaly detection and
data cleaning. Motivated by this observation, in this paper, we addressed a novel
problem of monitoring time-series discord over a sliding window.

As an efficient solution for this problem, we proposed SDM (Streaming Dis-
cord Monitoring). SDM exploits nearest neighbor search based on sequential
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Fig. 6. Impact of ϵ (approximation factor)

scan, to obtain the nearest neighbor of a new subsequence and identify the sub-
sequences which need to update their nearest neighbor. We showed that SDM
is simple, efficient, and easy to approximate the answer for further accelerating
its efficiency. Our experiments using real datasets demonstrate that SDM can
monitor the discord efficiently and A-SDM reduces the worst time update while
keeping high accuracy.
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